Exercise 4

(a) Find the slope of the tangent line to the curve $y=x-x^{3}$ at the point $(1,0)$
(i) using Definition 1
(ii) using Equation 2
(b) Find an equation of the tangent line in part (a).
(c) Graph the curve and the tangent line in successively smaller viewing rectangles centered at $(1,0)$ until the curve and the line appear to coincide.

Solution

Definition 1 and Equation 2 give two ways of calculating the slope of a tangent line.

$$
\begin{array}{ll}
\text { Definition 1: } \quad m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
\text { Equation 2: } & m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{array}
$$

Part (a)

The function in this exercise is $f(x)=x-x^{3}$, and the value of x that we want to know the tangent line at is $a=1$. Find m with Definition 1.

$$
\begin{aligned}
m=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(x-x^{3}\right)-\left(1-1^{3}\right)}{x-1} & =\lim _{x \rightarrow 1} \frac{x-x^{3}}{x-1} \\
& =-\lim _{x \rightarrow 1} \frac{x^{3}-x}{x-1} \\
& =-\lim _{x \rightarrow 1} \frac{x(x+1)(x-1)}{x-1} \\
& =-\lim _{x \rightarrow 1} x(x+1) \\
& =-1(1+1) \\
& =-2 \\
m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0} \frac{\left[(1+h)-(1+h)^{3}\right]-\left(1-1^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(1+h)-\left(1+3 h+3 h^{2}+h^{3}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h-3 h^{2}-h^{3}}{h} \\
& =\lim _{h \rightarrow 0}
\end{aligned}
$$

Part (b)

The aim is to find the equation of the line with slope 2 that passes through $(1,0)$. Start with the general formula of a line.

$$
y=m x+b
$$

Since the slope is $-2, m=-2$.

$$
y=-2 x+b
$$

Use the fact that the line passes through $(1,0)$ to determine b.

$$
\begin{gathered}
0=-2(1)+b \\
0=-2+b \\
b=2
\end{gathered}
$$

Therefore,

$$
y=-2 x+2 .
$$

$\underline{\text { Part (c) }}$
Below is a plot of the parabola with the tangent line at $x=1$.

Zoom in to the interval $0.9 \leq x \leq 1.1$.

